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Abstract: Induction furnaces are widely used for melting scrapped steel in small foundries and
their use has recently become more frequent. The maintenance of induction furnaces is usually
based on empirical decisions of the operator and an explosion can occur through operator error.
To prevent an explosion, previous studies have utilized statistical models but have been unable to
generalize the problem and have achieved a low accuracy. Herein, we propose a data-driven method
for induction furnaces by proposing a novel 2D matrix called a sequential feature matrix(s-encoder)
and multi-channel convolutional long short-term memory (s-ConLSTM). First, the sensor data and
operation data are converted into sequential feature matrices. Then, N-sequential feature matrices
are imported into the convolutional LSTM model to predict the residual life of the induction furnace
wall. Based on our experimental results, our method outperforms general neural network models
and enhances the safe use of induction furnaces.

Keywords: prognostics and health management; convolutional LSTM; induction furnace

1. Introduction

A furnace is a device used to melt metal through heat. Stable conditions and main-
tenance to avoid failures are key elements in the industrial use of furnaces. Furnace
maintenance methods depend on the type and numerous furnace classifications exist. The
general description and classification [1] of furnaces are in the Table 1.

The electric furnace was developed during the 19th century. Such furnaces are divided
into electric arc furnaces, which generate electricity directly through the metal, and induc-
tion furnaces, which generate heat indirectly by inducing electricity. An electric furnace is
cylindrical in shape for energy efficiency and there is no need to maintain a stable condition,
unlike with a blasting furnace. Electric furnaces are adequate for small-volume production,
special types of steel, and alloy production, rather than large-scale metal production use
for pig iron. An electric arc furnace melts the metal using the energy generated by an
arc between electrodes. By contrast, an induction furnace produces heat by inducing a
high-frequency current. The configurations of the electrical parts of the system are the
converter, inverter, and induction coil (furnace). The external current flows in the form of
an alternating current. The alternative current is then converted from the rectifier circuit in
the converter, to a smoothed direct current. Subsequently, the inverter re-converts a direct
current into an alternating current with a high frequency. Finally, a high-frequency current
is fed into the induction coil. The whole electricity flow process is shown in Figure 1.

It is known that the speed and efficiency of an induction furnace are higher and better
than those of a blasting furnace. Induction furnaces are widely used in small foundries.

Maintenance of the furnace is essential for efficiency and operational performance.
Maintenance of a blasting furnace is conducted to prevent the stoppage of an operation.
Therefore, maintaining a stable condition during the congestion process or a continuous
operation is crucial. In studies related to the maintenance of a blasting furnace, the state
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of such a furnace based on real-time monitoring [2] or the condition of the furnace [3] has
been predicted. By contrast, electric furnaces are mainly focused on preventing cracks
or steam explosions. Maintenance includes the regular inspection, monitoring, and pre-
diction of explosions. These differences in the maintenance result from a schematic of an
electric furnace, consisting of electrical and cooling parts. To prevent heat generation in an
electric furnace (induction coil or electrodes) from heat, the coolant needs to circulate the
heat generator.

Table 1. Furnace heat sources.

Heat Source Description Operation Raw Materials Form Factor Example

Chemical Melt metal by the
combustion process Continuous Ores, coke, flux Vertical shaft Blasting furnace

Electrical Melt metal by electricity Discrete Scrapped metal Large cylinder EAF, Induction furnace

Note: EAF, electric arc furnace.
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Figure 1. Electrical flow of induction furnace.

In the Figure 2, the induction furnace consists of three parts: refractory cement, copper
induction coils, water cooling hoses. A copper induction coil functions as a heat generator.
To cool the induction coils, the water cooling hoses cover the induction coils. Refractory
cement protects the induction coils and water cooling hoses. However, after some melting
operations, the furnace walls crack or erode. Molten metal flows through the cracks and
eventually meets with water cooling hoses, melting them. Contact between the coolant and
molten metal results in a steam explosion. It is known that such explosions rarely occur.
However, such an explosion will have a fatal impact on both businesses and workers. A
previously known solution to this problem is regular maintenance. However, the solution
has raw accuracy for predicting an explosion and is insensitive to the rapid transition of
a furnace.
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For this reason, many studies have introduced data-driven predictive maintenance of
the machine or systematic component to prevent a fault in advance [4]. Similar research
has been conducted through the fault diagnosis method [5,6]. As an example, signal-based
diagnosis methods have a wide application in real-time monitoring and diagnosis for an
electronic device or mechanical components [5]. Our paper focuses on the signal from the
electrical system. These methods can be classified into three categories, the time-domain
signal-based method, frequency-domain signal-based method, and the time-frequency
signal-based method [5]. Among these categories, the time-domain signal-based method is
most similar to our approach. A statistical approach [5] is often used for the time-domain
signal-based method. Recently, a two-dimensional approach was proposed [7].

When it comes to induction furnaces, there is still a lack of existing research. We began
by predicting the residual life of the furnace based on the operation and maintenance
data to develop a new data-driven time-domain signal-based approach. This paper is an
extension from our previous paper [8], which described the prediction of the residual life
of an induction furnace based on representative values using the multi-layer perceptron
(MLP), recurrent neural network (RNN), and long short-term memory (LSTM). In our
previous paper, we conducted two experiments, i.e., choosing the best representative value
among four statistics (1Q, Mean, Median, and 3Q), and choosing the best target value
(remaining time and remaining number of maintenance), and comparing the performance
of neural networks (MLP, RNN, and LSTM). As the results indicated, 3Q, RT, and MLP
exhibited the best performance.

In this paper, we propose sequential encoder and s-Convolutional LSTM. The pro-
posed method predicts the residual life by converting n-sensor data into an n-channel 2D
matrix and inputting it into a convolutional LSTM. The methodology consists of prepro-
cessing, s-encoder, and predictive models of the data. The contributions of this study are
as follows: (1) We provide a data-driven residual life prediction method that reflects the
operation of induction furnaces where multiple sensor attributes and operation data are
recorded independently; (2) We provide a data preprocessing technique for long-term time-
series sensor data. In millions of data collected from the induction furnace, we captured
the operation and predicted the long-term furnace conditions; (3) We propose a novel
2D sequential matrix to predict independent operations, along with a proper prediction
model; (4) Finally, we enhance the safety of the induction furnace to prevent a steam explo-
sion for worker safety in a foundry. The remainder of this paper is organized as follows.
Section 2 provides related studies on data-driven predictive maintenance. The proposed
idea is introduced in Section 3. Section 4 addresses the experimental results and pro-
vides descriptions of an actual induction furnace. Section 5 discusses the methodology
and experimental results. Finally, Section 6 gives some concluding remarks regarding
this research.

2. Related Work

Maintenance is defined as the work needed to maintain a road, building, and machine
in good condition. Susto et al. [9] classified maintenance into four categories: (1) run to
failure; (2) preventive maintenance; (3) condition-based maintenance; and (4) predictive
maintenance. Among these four categories, predictive maintenance has been a promis-
ing result.

Predictive maintenance will determine whether maintenance activity is required in
the future. There are two methods to predictive maintenance for predictive maintenance
methodologies. The first is statistical predictive maintenance [10]. The second is data-driven
predictive maintenance [11]. Statistical-based predictive maintenance uses information
from the system, i.e., the development of statistical models for predicting a failure and
enables preventive measures to be undertaken through a planned maintenance policy [12].
However, in the case of insufficient information or samples, another type of maintenance,
data-driven predictive maintenance, is required. Data-driven predictive maintenance
involves collecting a state from the system component during operation. Owing to the
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increased use of IoT devices and big data analytics, data-driven predictive maintenance
using data has become a mainstream research topic.

Many researchers have used machine-learning techniques [4] based on plentiful data.
In this study, we handle data-driven predictive maintenance using a machine-learning
technique. In addition, we summarize data-driven predictive maintenance using the
machine-learning technique. The summarized results of the related studies are as follows.

(1) Predictive maintenance for the mechanical component: This is the most common
topic of predictive maintenance. Research has been conducted on bearings [13], en-
gines [14], turbines [15], fans [16], pumps [17], gearboxes [18], milling machines [19],
and centrifugal pumps [18]. Usually, the mechanical component fault includes vibra-
tion, sound, or abnormal patterns of sensor data. These data have a long time window.
Methodologies such as logistic regression [13], support vector machines [17,18], artifi-
cial neural networks [14,15], and convolutional neural networks [19,20] are used for
the predictive maintenance of the mechanical component.

(2) Predictive maintenance for the systematic component: A system is a combination
of subsystems or components. In this case, multiple components or attributes are
simultaneously operated. Data, such as historical operations [21,22], processes [23],
and sensor data [24,25], are analyzed in merged form. Multivariate characteristics lead
to the use of random forest [25] and DNN [23,24]. Table 2 summarizes the predictive
maintenance studies.

Table 2. Summary of exiting methods for predictive maintenance.

Object Type Object Type of Input Data Methodology Reference

Mechanical component

Bearing Vibration Logistic Regression Pandya et al., 2014 [13]

Engine Vibration ANN Ahmed et al., 2015 [14]

Turbine Vibration ANN Biswal et al., 2016 [15]

Fan Vibration Echo State Network Balabanov et al., 2011
[16]

Pump Vibration,
motor line data SVM Rapur et al., 2019 [17]

Gearbox Vibration SVM Zhong et al., 2010 [18]

CNC milling machine Force, vibration,
directions CNN+Bi-LSTM Zhao et al., 2017 [19]

Pump, motor bearing,
pump Grey imaged signal CNN Wen et al., 2018 [20]

Systematic
component

Rail Network Historical data
Maintenance record SVM Li et al., 2014 [21]

High-speed
train system

Fault information
of bogies DNN Hexuan, et al., 2017 [23]

Aeroengine Trajectory, Operation,
Fault, Life span LSTM Miao et al., 2019 [24]

Semiconductor
manufacturing Maintenance record SVM,

k-NN Susto et al., 2015 [22]

Refrigeration System Temperature,
Defrost state Random Forest Kulkarni et al., 2018

[25]

Note: ANN, artificial neural network; SVM, support vector machine; DNN, deep neural network; LSTM, long short-term memory; CNN,
convolutional neural network.

Among the related studies, the method most similar to our approach was developed by
Wen et al. [20], who provided a fault diagnosis based on the convolutional neural network.
For the input data, they convert the time-domain signal into a gray pixel image and import
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it into a convolutional neural network. Consequently, the neural network outputs the fault
classification. Another similar approach was developed by Zhao et al. [19], who attached
a convolutional layer and bi-directional LSTM to predict the wear of the machine tool.
Collecting data from a CNC milling machine, they merge the force, vibration, and direction
data, and extract features using the convolutional model. In addition, output from the
convolutional model is transferred to the LSTM layers. Finally, the bi-directional LSTM
and fully connected layers predict the tool wearing.

These similar studies have common characteristics in which features are extracted
by the convolutional layer and the residual life is predicted using a 2D matrix. Despite
the similarity in the overall concept, in this study, there are three different parts from
similar papers.

(1) Channel configuration: This affects the dimensionality of the input data. For a higher
dimensionality, our approach divides the sensor data attributes into multiple channels
of the convolutional layer. Previous studies have configured a single channel.

(2) Data conversion: The input data form determines the neural network structure. In
Wen’s study, sensor data were converted into an image, whereas in Zhao’s approach,
machine movement and sensor data were imported without a conversion. In our
study, data converted into a 2D representation reflect the operation sequence.

(3) Target: Similar papers have handled the mechanical components. However, in our
study, induction furnaces are operated in a noisy environment. This distinguishes our
approach from those of previous studies.

For a similar study on the maintenance of an induction furnace, a statistical approach
was attempted. Christer et al. [26] proposed condition-based maintenance by predicting
the induction furnace erosion. The furnace conditions were based on the operation (tem-
perature, melt rate, operation time, and mechanical features), and these conditions were
used to build up the state-space model using a Karman filter. Our study has the same
objective. Although various types of research in this area have been conducted, research
on data-driven predictive maintenance for induction furnaces has not been fully covered.
Our study is unique in predicting the residual life of a furnace wall by using a sequential
feature matrix and providing data-driven method.

3. Proposed Method

In this study, we provide a prognostics approach using the data generated from the
electrical system of the induction furnace. The raw data were recorded 3 times per second,
and data were continuously recorded even with the operation stoppage. During operation,
the system components were generating the data by following the sequence. Each operation
was independent and could be delimited by using an operation sequence. Based on the
operation sequence, standby state data could be excluded during the preprocessing. After
several operations, the operator performed maintenance based on the condition of the
furnace wall. This process was defined as a maintenance cycle. A brief diagram of the
maintenance process is as follows.

Owing to the absence of specific maintenance records (date, time, duration) in the
raw data, we analyzed the frequency pattern and operation event logs to extract such
information. In the frequency data from raw data, we were able to distinguish maintenance
and patterns, which are shown in Figure 3. We calculated the residual life in a particular
operation until the latest maintenance. The calculated residual life times were then used as
a label in the training data for neural network models.

Figure 4 is the overall flow of proposed idea. The proposed method consists of three
steps and components of each stage and detailed explanation are as follows.
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(1) Data preprocessing: Active operation data are extracted from raw data and noise is
removed from the sensor data. Raw data are split into individual operations.

(2) Sequential encoder: Individual operations are converted into two matrices, an adja-
cent matrix and a feature matrix. Operation sequence data are used for the adjacent
matrix, and sensor data are used for the feature matrices. Each feature matrix reflects
a single-sensor attribute. Sequential feature matrices are derived by dividing the
adjacent matrix by the feature matrix.

(3) Prediction model (s-convLSTM): Sequential feature matrices are distributed and input
over n-channels. The prediction model consists of a convolutional layer and an LSTM
layer [27]. After the prediction is complete, the model exports the residual life of the
induction furnace. In the field application, the manager is able to plan the optimal
maintenance schedule by using this prognosis results. These actions keep the system
healthy. As an application in the field, the manager can easily plan the optimal
maintenance schedule by using the prognosis results. These processes can help the
manager keep track of the system’s health. A further explanation of the methodology
is as follows.

3.1. Data Preprocessing

Preprocessing is the process of removing noise from raw data and separating the
operation. Induction furnaces generate noise while receiving electricity and noise generated
during an operation. The noise removal and extraction of operational data are mandatory.
Figure 5 illustrated the procedure of the preprocessing. The preprocessing contains the
following procedures: (1) parameter selection, (2) sequence indexing, and (3) operation
extraction. The detailed explanations are as follows:

(1) Parameter selection: Valid furnace parameters were selected. To select the valid
parameters, we considered the patterns and correlations of the data. The raw data
scheme is described in Table 3.
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Table 3. Scheme of raw data.

Column Name Heat Source Description Operation

D03 Total power (current) Converter power usage A

D04 Delta Input Voltage (A.C.) Delta input voltage V

D05 Star Input Voltage (A.C.) Star input voltage V

D06 Delta Input Current Delta input current A

D07 Start Input Current Star input current A

D08 Converter Voltage (D.C.) Converter voltage V

D12 Commanded Inverter Power Commanded inverter power K.W.

D22 Actual Inverter Power Actual inverter power K.W.

D23 Frequency Inverter frequency Hz

D24 Inverter Input Voltage (D.C.) Inverter input voltage V

D25 Inverter Input Current Inverter input current A

D26 Inverter Output Voltage (A.C.) Inverter output voltage V

D27 Inverter Output Current Inverter output current A

D29 Event Sequence Furnace event sequence N/A

D30 Last Heating Time Last heating time Min

DT Date Time Recorded date and time N/A

The raw data included invalid or similar parameters. Excluding the time and sequence,
the following figure shows four sensor attributes: (1) voltage (D04, D05, D08, and D24),
(2) power or current (D03, D12, D22, and D25), (3) output (D26 and D27), and (4) other
attributes (D23, frequency; and D30, heating time). Each category (except frequency and
heating time) showed a high correlation in their group. Considering the correlation in the
category, we removed duplicate parameters in each group and selected valid parameters.
The selected parameters are as follows: D03, D08, D23, D26, D27, and D30, as displayed
in Figure 6.

(2) Sequence Indexing: The operation sequence was indexed, and the operation sequence
was recorded in a text format. For further processing, the operation sequence was
changed to a numerical form. Table 4 is the index of the event sequence:

We determined the conditions that existed at the start or end of the operation by
referring to the frequency pattern and event sequence. Usually, a particular combination
of event sequences was recorded (e.g., start: 1-2-7, 1-6-7). The index of the data that starts
and ends the operation was saved from the raw data. This index counts and delimits
individual operations.
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Figure 6. Pattern of available parameters and selected parameters (blue).

Table 4. Index of event sequence.

Seq_index 1 2 3 4 5 6 7 8

Event seq PowerDownSeq SelfTestSeq InterlockSeq FaultSeq PrechgSeq, AcbWaitSeq StandbySeq HeatingSeq

(3) Operation Extraction: An operation was extracted from raw data using frequency
and event sequences. The event sequence was the separator between the active
and standby. The frequency reflected the operating state of the furnace. By using
the frequency pattern, we could distinguish between maintenance and operation.
The extracting algorithm starts with event indexing. After extraction, the noise was
removed from the operation. Noise removal after separation was due to the loss of the
delimiting point during removal. After the preprocessing step, individual operations
are prepared without noise.

3.2. Sequential Encoder

During the preprocessing process, individual operations have different lengths and
values. Therefore, it is not possible to generalize and use them as an input of the neural
network. In this paper, we propose a sequential encoder and data structure, so called
sequential feature matrix, that can deliver an individual operation value without loss. The
sequential feature matrix is a 2D form of n attributes.

In the Figure 7, the sequential encoder consists of three parts. First is active operation
for input data. Second is matrix generator. And third is matrix calculator. The conversion
procedure is as follows: First, the matrix generator defines the matrix size. The number of
operational events defines the size of the matrix. Second, the matrix calculator calculates the
adjacent and feature matrices and derives the sequential feature matrix. In the operational
data, the sequence is converted into an adjacent matrix, and the other attributes are
converted into feature matrices based on the adjacent matrix. The sequential feature
matrices obtained through this process reflect both the length and attribute values of each
operation and attribute. Third, the adjacent matrix and feature matrix are divided. The
pseudo-code for the matrix conversion is as follows:
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Through Algorithm 1, we could contain multiple attribute features in each sequential fea-
ture matrix. After this step, N sequential feature matrices were generated for each operation.

Algorithm 1. SequencialEncoder

Input: dataset O{E, SN} (E, operation sequence data{E 3 1 · · ·D}; S, sensor data; I, number of operation data;
N, number of sensor attribute), matrix Z[D][D] (NULL matrix with size D × D)
Output : matrix SFN[D][D](sequential feature matrix with N channel)
FOR n := 1 TO N DO

SFn := Z
FOR i :=1 TO I-1 DO

ADZn := Z
FEAn := Z
IF E [i] = E[i+1] THEN

SP := E[i]
ADZn [SP][SP] := ADZn [SP][SP] +1
FEAn [SP][SP] := FEAn [SP][SP] + Sn [i]

ELSE
SP :=E[i]
EP :=E[i+1]
ADZn [SP][EP] := ADZn [SP][EP] +1
FEAn [SP][EP] := FEAn [SP][EP] + Sn [i]

FOR k :=1 TO D DO
FOR l :=1 TO D DO

SFn [k][l] := FEAn [k][l]/ADZn [k][l]
END FOR

END FOR
˜ END FOR

END FOR
Return SFN

3.3. Prediction Model and Neural Network Layer

In the Figure 8, the prediction model is configured with two types of layers: a CNN
and LSTM. The CNN converts a multi-channel sequential feature matrix into a feature
map, and the LSTM enables a prediction through the feature map. The descriptions of each
layer and the prediction model are as follows:



www.manaraa.com

Processes 2021, 9, 1121 10 of 15

Processes 2021, 9, x FOR PEER REVIEW 10 of 16 
 

 

      SP := E[i] 

      ADZn [SP][SP] := ADZn [SP][SP] +1 

      FEAn [SP][SP] := FEAn [SP][SP] + Sn [i] 

    ELSE  

      SP :=E[i] 

      EP :=E[i+1] 

      ADZn [SP][EP] := ADZn [SP][EP] +1 

      FEAn [SP][EP] := FEAn [SP][EP] + Sn [i] 

FOR k :=1 TO D DO 

      FOR l :=1 TO D DO 

        SFn [k][l] := FEAn [k][l]/ADZn [k][l] 

      END FOR 

    END FOR 

END FOR 

END FOR 

Return SFN 

3.3. Prediction Model and Neural Network Layer 
In the Figure 8, the prediction model is configured with two types of layers: a CNN 

and LSTM. The CNN converts a multi-channel sequential feature matrix into a feature 
map, and the LSTM enables a prediction through the feature map. The descriptions of 
each layer and the prediction model are as follows: 

 
Figure 8. Proposed model configuration and I/O. 

3.3.1. LSTM Layer 
LSTM is a type of recurrent neural network (RNN) [28]. Introduced by Hopfield [29], 

an RNN is a neural network architecture that primarily deals with sequential data, includ-
ing time-series data. The distinctive feature of an RNN from feedforward neural networks 
is the loop in the layer. This makes the RNN memorize previous data while training. Con-
tinuous multiplication in an RNN causes gradient vanishing problems [30]. To solve this 
problem, an LSTM was developed. The LSTM layer generates feedback through a sum 

Figure 8. Proposed model configuration and I/O.

3.3.1. LSTM Layer

LSTM is a type of recurrent neural network (RNN) [28]. Introduced by Hopfield [29],
an RNN is a neural network architecture that primarily deals with sequential data, includ-
ing time-series data. The distinctive feature of an RNN from feedforward neural networks
is the loop in the layer. This makes the RNN memorize previous data while training.
Continuous multiplication in an RNN causes gradient vanishing problems [30]. To solve
this problem, an LSTM was developed. The LSTM layer generates feedback through a sum
operation, and solves the gradient vanishing problem [30]. The general structure of the
LSTM is shown in Figure 9.

Processes 2021, 9, x FOR PEER REVIEW 11 of 16 
 

 

operation, and solves the gradient vanishing problem [30]. The general structure of the 
LSTM is shown in Figure 9. 

 
Figure 9. LSTM and memory block structure. 

The LSTM layer consists of a memory block and three gates (input, output, and for-
get). In the Figure 9, the forget gate decides whether to forget the cell state. The input gate 
decides whether to update the input to the cell state. Finally, the output gate determines 
whether the cell state is added to the hidden state. In this study, the LSTM layer received 
concatenated operation features from the convolutional layer and predicted the residual 
life of the furnace.  

3.3.2. Convolutional Layer 
A convolutional neural network (CNN) is a neural network that is mainly used for 

image processing. It was first proposed by LeCun et al. in 1989 [31] and defined in LeCun 
et al., 1998 [32], as the current widely known form. A CNN consists mostly of three types 
of layers: convolution, pooling, and multilayer perceptron [33]. Convolution operations 
refer to the output of images or matrices with the height and width multiplied by each 
image and kernel value, moving by stride to a specific size kernel. A feature map is de-
rived from a convolution operation. When this feature map passes through the activation 
function, this combination is called the convolution layer. The pooling layer down-sam-
ples the size of the feature map created in the convolution operation. In general, a convo-
lutional neural network consists of combining the convolution and pooling layers, and the 
prediction is then performed using a multi-layer perceptron with a down-sampled feature 
map. In our prediction model, the convolutional layer converted individual operations 
into feature maps and down-samples the multi-channel sensor data.  

3.3.3. Prediction Model 
In this study, time-series predictions were conducted using a 2D matrix. Two meth-

ods of the convolutional LSTM approach were considered. One was developed by Do-
nahue et al. [27], and is the so-called long-term recurrent convolution (LRCN). For the 
second, Xingjian et al. [34] inserted a convolution operation in the LSTM gate operation. 
If we adapt the Xingjian approach to our data, the model output is then not interpreted 
for labeling because of the inconsistency of the data. In our study, we used the LRCN 
approach. Similar to the LRCN approach, a CNN layer was inserted in front of the LSTM 
layer to process 2D data with multiple channels, and the feature map was input into the 
LSTM layer. Batch normalization was applied and dropout layers were inserted between 
LSTM layers. Adam was used as the optimizer. The configuration of the prediction model 
is described in the Figure 10: 
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The LSTM layer consists of a memory block and three gates (input, output, and forget).
In the Figure 9, the forget gate decides whether to forget the cell state. The input gate
decides whether to update the input to the cell state. Finally, the output gate determines
whether the cell state is added to the hidden state. In this study, the LSTM layer received
concatenated operation features from the convolutional layer and predicted the residual
life of the furnace.

3.3.2. Convolutional Layer

A convolutional neural network (CNN) is a neural network that is mainly used for
image processing. It was first proposed by LeCun et al. in 1989 [31] and defined in
LeCun et al., 1998 [32], as the current widely known form. A CNN consists mostly of
three types of layers: convolution, pooling, and multilayer perceptron [33]. Convolution
operations refer to the output of images or matrices with the height and width multiplied
by each image and kernel value, moving by stride to a specific size kernel. A feature
map is derived from a convolution operation. When this feature map passes through
the activation function, this combination is called the convolution layer. The pooling
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layer down-samples the size of the feature map created in the convolution operation.
In general, a convolutional neural network consists of combining the convolution and
pooling layers, and the prediction is then performed using a multi-layer perceptron with a
down-sampled feature map. In our prediction model, the convolutional layer converted
individual operations into feature maps and down-samples the multi-channel sensor data.

3.3.3. Prediction Model

In this study, time-series predictions were conducted using a 2D matrix. Two methods
of the convolutional LSTM approach were considered. One was developed by Don-
ahue et al. [27], and is the so-called long-term recurrent convolution (LRCN). For the
second, Xingjian et al. [34] inserted a convolution operation in the LSTM gate operation.
If we adapt the Xingjian approach to our data, the model output is then not interpreted
for labeling because of the inconsistency of the data. In our study, we used the LRCN
approach. Similar to the LRCN approach, a CNN layer was inserted in front of the LSTM
layer to process 2D data with multiple channels, and the feature map was input into the
LSTM layer. Batch normalization was applied and dropout layers were inserted between
LSTM layers. Adam was used as the optimizer. The configuration of the prediction model
is described in the Figure 10:
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4. Experiment

The computing environment was Windows 10 run on a GTX2070 GPU and Python
3.7. The neural network models were configured using the Keras.R framework. The
experiment used data generated during a production period of approximately 24 months
from October 2017 to September 2019 in a 3000-kW powered induction melting furnace. The
raw data of the induction furnace were generated three times per second. The data included
181 production and 13 maintenance cycles. Among these data, incomplete maintenance
cycles were excluded (three maintenance cycles). The dataset is divided into three parts:
70% of the data as a training set, 15% as a validation set, and 15% as a test set. Each
experiment dataset is configured randomly. The sequential feature matrix had a size of
8 × 8, with 6 channels. The noise was filtered out from the 5th to 95th percentiles.

For the model evaluation, the root-mean-square error (RMSE) and Pearson’s correlation
coefficient (PCC) were used to check the neural network performance (Tables 5 and 6). The
experiment compared three methodologies: a multi-layer perceptron model, an LSTM
model, and a sequential feature convolution-LSTM. The first and second models use the
representative values of each operation referred to from our previous study [8]. The
representative value captures the third quantile from each operation. The experiments
were repeated 10 times. The experimental results are as follows:

RMSE is a measure of the difference between the actual and predicted values [35].
From the results table, the mean value of the proposed method was the lowest among the
three neural network models. The LSTM is slightly inferior to the proposed method. MLP
achieved the highest RMSE. Regardless of the RMSE, the standard deviation was minimal
in the LSTM model.
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Table 5. Experiment results (RMSE).

Index MLP LSTM s-ConvLSTM

1 0.828057831 0.206931 0.156686
2 0.63402467 0.207138 0.190867
3 0.734765453 0.212748 0.120577
4 0.696998674 0.213947 0.194754
5 0.873012705 0.212426 0.173549
6 0.714811902 0.212015 0.177297
7 0.709106769 0.210401 0.200828
8 0.812086075 0.21038 0.20231
9 0.570165822 0.211098 0.199597
10 0.683984788 0.208985 0.166552

Mean 0.725701469 0.210607 0.178302
Stdev 0.086761715 0.002226 0.024345

Table 6. Experiment results (PCC).

Index MLP LSTM s-ConvLSTM

1 0.725906 0.708037 0.921909
2 0.817845 0.702439 0.882984
3 0.825011 0.684612 0.909343
4 0.800784 0.691447 0.904265
5 0.718954 0.701471 0.867883
6 0.779492 0.678868 0.932762
7 0.790403 0.701468 0.931963
8 0.7198 0.695576 0.801254
9 0.82586 0.69687 0.899124
10 0.769335 0.699486 0.870275

Mean 0.777339 0.696027 0.892176
Stdev 0.040523 0.008386 0.037449

PCC represents the tendency between the actual and predicted values. The higher the
PCC value, the better the performance of the neural network. The proposed methodology
performed best, on average, followed by MLP and LSTM. In summary, although the
proposed methodology showed the best performance, on average, for both RMSE and PCC,
but the LSTM on the standard deviation showed marginal or better results. The following
is a graph of the result table. In the Figure 11, s-convLSTM shows best performance for
both metrics.
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5. Discussion

In this study, the performance of the proposed methodology was validated exper-
imentally to predict the maintenance points based on data generated from a 3000-kW
scale induction furnace. The proposed method showed a good performance based on the
experiment results, and we validated that the accuracy of the proposed methodology was
valid for both metrics (RMSE and PCC). There are two discussion points: a performance
transition through the input dimension and the quantity of data. The detailed contents for
discussion are as follows:

First, the performance changes as the input dimension increases. In our experimental
data, the individual operation had different lengths and independent values. On average,
one operation was recorded daily. Therefore, the number of operations included in the data
was relatively small and unique. In our previous research [8], the individual operation data
were partially used. Therefore, it is difficult to enhance the performance of neural network
models. Multi-sensor attributes are imported into individual channels, and the matrix
changes into a structured form. This procedure increases the dimensions of the input data.
Although the data are compressed by passing through a convolutional layer, the increase
in dimension leads to an enhancement. A similar result was reported by Liu et al. [33]. The
convolutional layer is used to compress and enhance the performance of the algorithm for
multiple attributes.

The second is the algorithm performance, which depends on the number of data. The
relatively small number of operations and maintenance were included in our data. In
Tables 5 and 6, the standard deviations of both metrics are relatively small. We assume
that the performances of the standard deviation of the LSTM and convolutional LSTM are
derived from the insufficiency. In this domain, metrics and performance changes based
on the amount of data are still unknown. Thus far, there is a limit to generalizing our
proposed method. It is necessary to observe the data accumulation and identify these
changes through subsequent studies. Our study achieved an accurate performance through
the unique data structure for the induction furnace and the proper quantity and input
dimensions of the data required for our approach, which will also be addressed in our
future research.

6. Conclusions

The previous maintenance method for induction furnace was based on range of leak
current or inverter frequency. The maintenance activities done passively (exceed range-
shut down-maintenance), without any consideration of system health. In this paper, we
proposed a prognostics approach for induction furnaces by using a novel multi-channel
sequential feature matrix based on a convolutional LSTM. This method varies the channels
imported into a convolutional LSTM model. Individual operation sensor attributes were
standardized using this procedure without loss. The proposed method showed a better
performance in RMSE and PCC compared to MLP and LSTM. As a time-domain signal-
based fault diagnosis method, our method is unique for using the multi-channel for multi-
attribute. An independent channel provides preservation of features and structured IoT
data provides the standardized form for different operations. Referring to these features,
the proposed method can be used in different domains and different objects. As the
utilization of scraps and special steel products increases, the use of induction furnaces will
increase. It is necessary to provide data-driven approaches for the safe use of induction
furnaces. The proposed method allows us to obtain a high predictive performance in
environments where data are insufficient and independent.

Future studies will focus on two factors. The first is the trainless neural network
model for induction furnaces. Depending on the size, the work of induction furnaces takes
a long time. It is difficult to obtain a trained neural network model. A generative model
for creating data or transfer learning is needed to solve this problem. Related research can
accelerate a practical approach for the predictive maintenance of induction furnaces. The
second is a complementary method during operation. In our case, the individual operation
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took 4 h on average. The proposed method showed a good performance for a complete
operation. However, it does not cover ongoing operations. Research to distinguish and
predict the status of ongoing studies is required. Although such research does not need to
be sophisticated, it is important to improve the safety of induction furnaces through a dual
configuration. Our future studies will focus on the generalized application of induction
furnaces. Moreover, these will be key for the practical applications of such furnaces.
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